Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

As simple as possible: a modelling approach to upscale the relevance of ecotoxicological studies

Objective

As simple as possible: a modelling approach to upscale the relevance of ecotoxicological studies.

A big discrepancy exists between the increasing demand for ecological realism in regulatory risk assessment and the effective implementation of ecotoxicological studies aimed at assessing the adverse effect of stressors at the population or higher level. The effect of toxicants is commonly measured on individuals as a proxy for the effect on populations but the actual population level impacts are very hard to determine. Ecological modelling can overcome this challenge. However, until now the complexity in the application of these models has presented a serious hurdle for their use in ecotoxicology.

In this study we propose the application of a simple generic toxicokinetic-toxicodynamic model that integrates life-history traits such as growth, reproduction, maintenance and survival in one model organism to assess adverse effects of three different metals over time. We will carry out experiments to calibrate and test the model. The calibration of the model will allow the identification of the physiological modes of action of each metal, unraveling the different ways the chemicals can affect the life-cycle of the organism. We will improve the predictive and diagnostic power of these models by direct measurements of the time course of internal metal concentrations which will replace the currently used “scaled internal concentrations”, a very indirect approximation. Finally, we will couple the toxicokinetic-toxicodynamic model with an individual-based population model and explore the population level consequences of metal contamination.

This research will provide insight into the physiological modes of action of three metals at individual level and their population level consequences in an ecological context. We will demonstrate how effects of different chemical stressors can be understood, modeled and assessed within one simple, but generic modelling framework.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2013-IEF
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IEF - Intra-European Fellowships (IEF)

Coordinator

UNIVERSITY OF YORK
EU contribution
€ 309 235,20
Address
HESLINGTON
YO10 5DD York North Yorkshire
United Kingdom

See on map

Region
Yorkshire and the Humber North Yorkshire York
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0