Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-28

Variational Basis Learning for Statistical Motion Atlases: Application to Quantitative Dynamic Cardiac Imaging

Objective

Pulmonary Arterial Hypertension (PAH) is a severe progressive disorder characterised by a vasculopathy of the small pulmonary arteries to the lung. Failure of the right ventricle (RV) to adapt to elevated resistance to blood flow results in death, usually within 3 years for untreated patients with PAH. Image-based global measures can only reflect the overall performance of the RV; however, there is good evidence that PAH can be identified by localised motion abnormalities in the RV and the interventricular septum (IVS), without the need for invasive and expensive right heart catheterisation.

In this proposal, we are interested in assessment of the diagnostic value of the motion abnormalities in RV and IVS, relevant to PAH. Given two groups of PAH patients and healthy controls, an important distinguishing feature of our computational framework with the existing literature is that it will allow multiscale evaluations all at the same time: L1) At the population level; a statistical motion atlas describing the “average” pattern of the heart motion over the population will be constructed. Two atlases will be made for PAH patients and healthy control subjects; L2) at the patient level; for any subject a probability value of being a patient with PAH will be measured to describe the severity of the disease; L3) at the myocardium level; localised and expert interpretable abnormality map over the heart will be measured for a given patient. From two populations of patients with PAH and normal controls, we aim to learn a set of optimal basis functions that are both discriminative at the patient level, and sparsely fitted to the pathological areas.

The proposed method is a novel full Bayesian probabilistic framework, which learns the sparseness and the number of the basis function from the data by maximising the model evidence using variational Bayes.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2013-IIF
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IIF - International Incoming Fellowships (IIF)

Coordinator

THE UNIVERSITY OF SHEFFIELD
EU contribution
€ 309 235,20
Address
FIRTH COURT WESTERN BANK
S10 2TN SHEFFIELD
United Kingdom

See on map

Region
Yorkshire and the Humber South Yorkshire Sheffield
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0