Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Multi-phenotype Analysis of Rare Variants – devELopment of an analysis method and software with implementation to large-scale data to unravel pleiotropic genetic effects behind cardiometabolic traits

Objective

The obesity rates are rapidly increasing worldwide concomitantly with rising prevalence of chronic diseases, including cardiovascular disease and type 2 diabetes. Individual trait genome-wide association studies of common variants (minor allele frequency, MAF>5%) have highlighted complex genetic relationships between related cardiometabolic phenotypes with an intriguing pattern of associated overlapping DNA sequence variant effects, which does not always follow the epidemiological correlations. Joint analysis of multiple correlated traits: (i) increases power for variant discovery; and (ii) facilitates dissection of the genetic mechanisms underlying multi-phenotype association signals, including evaluation of the evidence for pleiotropy. Multi-phenotype analysis methods for common variants have been proposed, however, with the current focus being in low-frequency and rare variants (MAF<5%/1%), novel method development for identification of such effects is required. The project has three goals:
1) To develop a multi-phenotype analysis method for rare variants and to test it on at least 20000 individuals directly available to me. The availability of high-throughput “omics” data, including sequencing data and serum metabolites, adds further challenges to the methods development, e.g. due to genotype uncertainty and hundreds of correlated traits. I will extend the methodological development to the methods for meta-analysis of rare variants, given the need to combine genetic effects across many individual studies;
2) To create an efficient publicly available software tool for the developed methods;
3) To dissect the genetic architecture behind cardiometabolic phenotypes by conducting a large-scale multi-phenotype meta-analysis of rare variant effects on metabolic traits within international consortia. This timely and highly relevant project will allow me to embark on an independent academic career in the field of statistical genetics where my research interests lie.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2013-IEF
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IEF - Intra-European Fellowships (IEF)

Coordinator

IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
EU contribution
€ 221 606,40
Address
SOUTH KENSINGTON CAMPUS EXHIBITION ROAD
SW7 2AZ London
United Kingdom

See on map

Region
London Inner London — West Westminster
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0