Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Holistic evaluation of light and multiwave applications to high resolution imaging in ophthalmic translational research revisiting the helmholtzian synergies

Objective

The HELMHOLTZ project associates two leading neighbouring institutions: the Institut de la Vision (Fondation Voir et Entendre) and the Institut Langevin (Fondation Pierre-Gilles de Gennes) committed to boost the integration of technological research in photonics, acoustics and ultrasound with translational research on vision impairment, in order to co-develop and validate prototypes for non-invasive in vivo structural and functional dynamic imaging technologies for ophthalmology.
Innovative imaging tools will rely on emerging concepts such as ultrafast ultrasound, laser Doppler holography, full field and ultrafast cell resolution optical coherence tomography (OCT), bi-photon microscopy. These will enable both structural and functional analyses of the ocular tissues, with strong focus on the macula, the central part of the retina which is affected by the most severe disabling conditions, e.g. retinal dystrophies, age-related macular degeneration, glaucoma, vascular diseases, diabetic retinopathy, toxicities. We shall explore: 1) the subcellular and dynamic structure of photoreceptors, 2) changes in vascular flow and 3) functional imaging of the visual system from retina to cortex. Massive data acquisition and ultrafast numerical signal processing will take advantage of GPU-based parallel computing and of new asynchronous visual sensors. Continuous feedbacks from animal and human studies will lead to refine or redefine the prototypes jointly.
These new diagnostic tools will address unmet medical needs by improving the understanding of retinal pathophysiology, defining new biomarkers for disease progressions and enabling clinicians to select the best suited emerging therapies, from neuroprotection to gene therapy and visual restoration. As the most optically and functionally approachable part of the brain, the retina will thus exemplify and validate major streams of technological innovations for care by enhancing cross-fertilization between biomedicine and physics.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2013-SyG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-SyG - Synergy grant

Host institution

FONDATION DE COOPERATION SCIENTIFIQUE VOIR ET ENTENDRE
EU contribution
€ 5 973 523,00
Address
17 RUE MOREAU
75012 Paris
France

See on map

Region
Ile-de-France Ile-de-France Paris
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (2)

My booklet 0 0