Objective
Evolved stars are the factories of interstellar dust. This dust is injected into the interstellar medium and plays a key role in the evolution of astronomical objects from galaxies to the embryos of planets. However, the processes involved in dust formation and evolution are still a mystery. The increased angular resolution of new generation telescopes, will provide for the first time a detailed view of the conditions in the dust formation zone of evolved stars, as shown by our first observations with ALMA.
We propose to combine astronomical observations, modelling, and top-level experiments to produce star dust analogues in the laboratory and identify the key species and steps that govern their formation. We will build two innovative setups: the Stardust chamber to simulate the atmosphere of evolved stars, and the gas evolution chamber to identify novel molecules in the dust formation zone. We will also improve existing laboratory setups and combine different techniques to achieve original studies on individual dust grains, their processing to produce complex polycyclic aromatic hydrocarbons, the chemical evolution of grain precursors and how dust grains interact with abundant astronomical molecules. Our simulation chambers will be equipped with state-of-the-art in situ and ex situ diagnostics.
Our astrophysical models, improved by the interplay between observations and laboratory studies, will provide powerful tools for the analysis of the wealth of data provided by the new generation of telescopes. In addition, new broad-band state-of-the-art High Electron Mobility Transistor receivers will be built, allowing us to perform an unprecedented astronomical survey of evolved stars and providing an invaluable legacy for any scientist in the field. The synergy between astronomers, vacuum and microwave engineers, molecular and plasma physicists, surface scientists, and theoreticians in NANOCOSMOS is the key to provide a cutting-edge view of cosmic dust.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- agricultural sciences agriculture, forestry, and fisheries agriculture grains and oilseeds
- natural sciences chemical sciences organic chemistry hydrocarbons
- natural sciences physical sciences astronomy planetary sciences planets
- natural sciences physical sciences astronomy planetary sciences celestial mechanics
- medical and health sciences clinical medicine embryology
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
ERC-2013-SyG
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Host institution
28006 MADRID
Spain
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.