Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Regulation of muscle stem cells by ERRgamma

Objective

Skeletal muscle is a highly plastic tissue capable of spontaneous repair in response to injury via the recruitment of muscle stem cells called the satellite cells. These cells are localised within the myofibre basal lamina and are activated upon muscle damage, they proliferate and differentiate to replace the damaged muscle. Satellite cells are the key rate-limiting step for successful repair and the transcriptional cues that emanate from the skeletal muscle to activate regeneration are unclear. Thus, discovery of key molecules that regulate satellite cell activation will accelerate the ability to stimulate muscle repair. Estrogen related receptors (ERR isoforms α, β and γ) are a sub-family of orphan nuclear hormone receptors that have been identified as major regulators of cellular and mitochondrial metabolism. Skeletal muscle-specific overexpression of ERRγ has been shown to drive metabolic and angiogenic muscle reprogramming in both health and disease. This project will test the hypothesis that targeting ERRγ in skeletal muscle will improve the myofibre regenerative capacity via satellite cell recruitment and secretion of growth factors. Identification of the underlying mechanisms will provide new knowledge that can be exploited to develop new therapeutic avenues for promoting satellite cell recruitment and myofibre regeneration in terms of injury or degenerative conditions like ageing and muscle wasting disorders. The hypothesis will be tested by addressing the following specific aims: 1) To establish the satellite cell proliferation and differentiation profiles in ERRγ transgenic muscles at baseline and in response to acute eccentric exercise. 2) To investigate the effect of ERRγ on satellite cell recruitment in response to muscle injury. 3) To determine the interplay between muscular revascularisation and reparative myogenesis by ERRγ. 4) To determine whether an AAV-mediated ERRγ delivery increases satellite cell recruitment and improves muscle integrity.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2013-CIG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-CIG - Support for training and career development of researcher (CIG)

Coordinator

UNIVERSITY OF HULL
EU contribution
€ 100 000,00
Address
COTTINGHAM ROAD
HU6 7RX Hull
United Kingdom

See on map

Region
Yorkshire and the Humber East Yorkshire and Northern Lincolnshire Kingston upon Hull, City of
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0