Objective
The limited supplies of traditional fossil fuels and environmental damage caused by their CO2 emissions have caused a growing interest in the exploitation of renewable energy sources. By far the most promising replacement fuel for road transport is hydrogen because of its abundance, efficiency, low footprint for carbon and the absence of other harmful emissions. In 2015 it is expected that the number of hydrogen fuel installations will exceed a hundred thousand units.
Because hydrogen can react explosively with air there is inevitably public apprehension about using hydrogen as a mass market fuel that can inhibit wider commercialisation. Technical issues regarding hydrogen storage leakage are (i) the small size of the H molecule which causes it to diffuse through relatively open structured materials such as composites, and (ii) the phenomenon of Hydrogen Embrittlement (HE) which seriously reduces the strength of metals in extended contact with hydrogen. In order to greatly improve public confidence in the safety of hydrogen fuel, to address the technical issues, and thus facilitate the rapid commercialisation of hydrogen powered road transport, this project will develop a technology that will detect leaks and structural weakening of containment vessels caused by HE. This will prevent catastrophic failure of vessels which can actually occur before even small leaks arise. Particularly, the project goal is to develop novel tangential neutron radiography and acoustic emission (AE) techniques in combination for the reliable and cost effective continuous monitoring of the integrity of hydrogen storage tanks at central depots, service stations and on vehicles i.e. at every point of hydrogen storage along the supply chain from the production plant to the fuel tank on a hydrogen powered vehicle. The novelty of neutron radiography is that it exploits stored hydrogen as a contrast medium for the exposure of tank defects.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technologymaterials engineeringcomposites
- social sciencessocial geographytransport
- engineering and technologyenvironmental engineeringenergy and fuels
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback.
You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Topic(s)
Call for proposal
FP7-SME-2013
See other projects for this call
Funding Scheme
BSG-SME - Research for SMEsCoordinator
16245 Demirtas Bursa
Türkiye