Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-27

LEarning from our collective visual memory to Analyze its trends and Predict future events

Objective

People constantly draw on past visual experiences to anticipate future events and better understand, navigate, and interact with their environment, for example, when seeing an angry dog or a quickly approaching car. Currently there is no artificial system with a similar level of visual analysis and prediction capabilities. LEAP is a first step in that direction, leveraging the emerging collective visual memory formed by the unprecedented amount of visual data available in public archives, on the Internet and from surveillance or personal cameras - a complex evolving net of dynamic scenes, distributed across many different data sources, and equipped with plentiful but noisy and incomplete metadata. The goal of this project is to analyze dynamic patterns in this shared visual experience in order (i) to find and quantify their trends; and (ii) learn to predict future events in dynamic scenes.
With ever expanding computational resources and this extraordinary data, the main scientific challenge is now to invent new and powerful models adapted to its scale and its spatio-temporal, distributed and dynamic nature. To address this challenge, we will first design new models that generalize across different data sources, where scenes are captured under vastly different imaging conditions. Next, we will develop a framework for finding, describing and quantifying trends that involve measuring long-term changes in many related scenes. Finally, we will develop a methodology and tools for synthesizing complex future predictions from aligned past visual experiences.
Breakthrough progress on these problems would have profound implications on our everyday lives as well as science and commerce, with safer cars that anticipate the behavior of pedestrians on streets; tools that help doctors monitor, diagnose and predict patients’ health; and smart glasses that help people react in unfamiliar situations enabled by the advances from this project.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2013-StG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-SG - ERC Starting Grant

Host institution

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET AUTOMATIQUE
EU contribution
€ 1 496 736,00
Address
DOMAINE DE VOLUCEAU ROCQUENCOURT
78153 Le Chesnay Cedex
France

See on map

Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0