Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

STATISTICAL ANALYSIS OF PROTEIN SEQUENCES TO INFER 3D STRUCTURE AND FUNCTION

Objective

Across natural science, experimental techniques that generate large and inherently noisy datasets are currently being developed. As these techniques gain popularity, the potential impact of inference methods that enable useful information to be extracted from the resulting data is large. However, different experiments generate datasets that are afflicted by different types of noise, and require different analysis methods. In particular while the development of general theoretical tools is important, it is also necessary for researchers to take a multidisciplinary, intersectorial approach, and to work with both theoreticians and experimentalists to gain understanding of how the available theoretical tools can be applied to different datasets, so that relevant and useful information can be extracted from the data. This approach can give rise to the collection of new data, which can establish whether the theoretical approach is making accurate inferences and predictions from the existing data.

I collaborate with both theorists and experimentalists to extract useful information from large sets of protein sequence data. This approach led to the development of state of the art techniques that make inferences about the 3D structure and function of proteins from large multiple sequence alignments. My research will focus on understanding the scope and the accuracy of the information that we are able to infer from the data, and how this depends on the parameters of the data. Collaborations with experimentalists will help us understand how this information can be exploited to engineer changes in protein phenotypes. The experience and knowledge gained from this specific domain will inform my longer-term goal; to take this approach of close collaboration with both theorists and experimentalists in order to extract information from high dimensional, noisy datasets, and apply it more widely to important and outstanding questions across different areas of natural science.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2013-CIG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-CIG - Support for training and career development of researcher (CIG)

Coordinator

THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
EU contribution
€ 100 000,00
Address
TRINITY LANE THE OLD SCHOOLS
CB2 1TN CAMBRIDGE
United Kingdom

See on map

Region
East of England East Anglia Cambridgeshire CC
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0