Objective
Transition metal oxides possess a broad range of functionalities (superconductivity, magnetism, ferroelectricity, multiferroicity) stemming from the interplay between structural effects and electronic correlations. Recent work has revealed exciting physics at their interfaces, including two-dimensional (2D) conductivity and superconductivity in the electron gas that forms at the interface between two band insulators, LaAlO3 and SrTiO3. However, to date, no interfacial system has truly shown electronic properties that are absent from the phase diagram of both bulk constituents. I argue that to fully embrace the immense potential of oxide interfaces and unveil unprecedented electronic phases, combining insulators with stronger electronic correlations is mandatory.
At the crossroad between strongly-correlated electron physics, microelectronics and spintronics, the MINT project will pioneer routes toward a new realm of solid-state physics. MINT will harness electronic and magnetic instabilities in correlated oxides to craft new electronic phases controllable by external stimuli. These phases will be generated by the synergic action of strain engineering, interfacial charge/orbital/spin reconstruction and octahedra connectivity control, using rare-earth titanate RTiO3 Mott-Hubbard insulators as templates.
Emerging states that are foreseen include 2D electron gases with ferroic order, superconductivity at relatively high temperature, topological states and new forms of multiferroicity and magnetoelectric coupling. The discovery of any of these new states would represent a major breakthrough in oxide electronics. They will open possibilities for innovative devices yielding giant electroresistance without ferroelectrics, and new schemes to control spin currents by electric fields.
At full term, MINT will establish whether oxide interfaces will live up to their expectations and start in the coming decades a technological revolution comparable to that of silicon.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences chemical sciences inorganic chemistry inorganic compounds
- natural sciences physical sciences electromagnetism and electronics spintronics
- natural sciences physical sciences condensed matter physics solid-state physics
- natural sciences physical sciences electromagnetism and electronics microelectronics
- natural sciences physical sciences electromagnetism and electronics superconductivity
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
ERC-2013-CoG
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Host institution
75794 Paris
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.