Objective
Our ability to tailor individual proteins is now sophisticated, but our ability to assemble such proteins into larger structures is still primitive. Proteins are typically joined by reversible or non-specific linkages. We have designed a unique way to connect protein building blocks irreversibly and precisely, via spontaneous isopeptide bond formation. This involves modifying proteins with a short peptide tag (SpyTag) that is based upon remarkable chemistry used by pathogenic Gram-positive bacteria. Here we will develop this novel approach to address major challenges in synthetic biology. We will engineer SpyTag capture towards infinite affinity (defined as diffusion-limited on-rate and no off-rate), to transform the sensitivity of peptide detection in living systems. We will also apply SpyTag to create a new generation of protein polymers, irreversibly assembled with molecular precision and tailored branching. In parallel we will harness SpyTag to enhance circulating tumor cell (CTC) capture, one of the most promising ways to achieve early cancer diagnosis. In capturing CTCs and other rare cells from blood, the high forces mean that even the strongest non-covalent linkages fail. SpyTag covalent bridging, in concert with super-resolution live cell fluorescence microscopy, will give us the opportunity to answer key questions about the forces and membrane dynamics at the magnetic bead:cell synapse. We will exploit these insights and SpyTag-assembled antibody polymers to dramatically reduce the threshold of antigen expression for CTC capture. This comprehensive program of research will explore novel concepts in protein recognition and cellular response to force, while creating conceptually new tools, making it possible for biologists in a wide range of areas to step beyond existing barriers.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciencesbiological sciencesmicrobiologybacteriology
- natural sciencesbiological sciencessynthetic biology
- natural sciencesphysical sciencesopticsmicroscopysuper resolution microscopy
- natural sciencesbiological sciencesbiochemistrybiomoleculesproteins
- natural scienceschemical sciencespolymer sciences
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback.
You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Topic(s)
Call for proposal
ERC-2013-CoG
See other projects for this call
Funding Scheme
ERC-CG - ERC Consolidator GrantsHost institution
OX1 2JD Oxford
United Kingdom