Objective
Strongly correlated quantum systems, which are at the heart of many open problems in condensed matter,
quantum chemistry, or high-energy physics, are challenging to understand due to their intricate entanglement
structure. Quantum information theory provides the right framework to characterize highly entangled
states and has given rise to the class of Tensor Network States, which capture the entanglement structure of
strongly correlated systems by building the global wavefunction from local tensors and provide an efficient
description of their low-energy states.
In this project, we will develop a framework for the systematic study of strongly correlated systems using
exact wavefunctions based on Tensor Network States. It will give us the tools to construct controlled families
of states by encoding the relevant structure of the system directly into the wavefunction, rather than a
Hamiltonian, and to study their behavior. Since the tensor describing the wavefunction also gives rise to an
associated Hamiltonian, this establishes a framework for building solvable models with the tensor as the
new central object.
The novelty of our approach lies in the fact that quantum information gives us the tools to systematically
construct wavefunctions for general strongly correlated systems, while at the same time, encoding the
structure of the problem directly into the wavefunction results in small families of states with a direct
physical interpretation of the parameters, unlike for fully variational approaches.
We will apply our framework to study the physics of a range of strongly correlated models, in particular
frustrated fermionic and spin systems, in order to understand the possible physics they can exhibit. This
will enhance our understanding of the physics of strongly correlated systems, and, together with numerical
results, experimental findings, and quantum simulations, ultimately lead to new applications and materials
based on strongly correlated matter.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- medical and health sciences basic medicine pharmacology and pharmacy drug discovery
- natural sciences physical sciences quantum physics
- natural sciences chemical sciences physical chemistry quantum chemistry
- natural sciences physical sciences theoretical physics particle physics quarks
- natural sciences mathematics applied mathematics mathematical physics conformal field theory
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-STG - Starting Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2014-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
80539 Munchen
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.