Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Deciphering and reversing the consequences of mitochondrial DNA damage

Project description

Mitochondrial DNA mutations and implications for health

Mitochondria contain their own genome, a compact, circular, double-stranded DNA molecule that encodes 13 protein subunits of the respiratory chain complexes. Emerging evidence indicates a role for accumulating mitochondrial DNA mutations in organelle function. Funded by the European Research Council, the RevMito project is interested in identifying the potential implications of mitochondrial DNA mutations for ageing and disease. Researchers will employ the yeast Saccharomyces cerevisiae as a model organism to investigate the outcomes of mitochondrial DNA damage and loss, with a particular focus on protein homeostasis. The findings could enhance our understanding of mitochondrial dysfunction and potentially lead to new treatments for mitochondrial diseases.

Objective

Mitochondrial DNA (mtDNA) encodes several proteins playing key roles in bioenergetics. Pathological mutations of mtDNA can be inherited or may accumulate following treatment for viral infections or cancer. Furthermore, many organisms, including humans, accumulate significant mtDNA damage during their lifespan, and it is therefore possible that mtDNA mutations can promote the aging process.

There are no effective treatments for most diseases caused by mtDNA mutation. An understanding of the cellular consequences of mtDNA damage is clearly imperative. Toward this goal, we use the budding yeast Saccharomyces cerevisiae as a cellular model of mitochondrial dysfunction. Genetic manipulation and biochemical study of this organism is easily achieved, and many proteins and processes important for mitochondrial biogenesis were first uncovered and best characterized using this experimental system. Importantly, current evidence suggests that processes required for survival of cells lacking a mitochondrial genome are widely conserved between yeast and other organisms, making likely the application of our findings to human health.

We will study the repercussions of mtDNA damage by three different strategies. First, we will investigate the link between a conserved, nutrient-sensitive signalling pathway and the outcome of mtDNA loss, since much recent evidence points to modulation of such pathways as a potential approach to increase the fitness of cells with mtDNA damage. Second, we will explore the possibility that defects in cytosolic proteostasis are precipitated by mtDNA mutation. Third, we will apply the knowledge and concepts gained in S. cerevisiae to both candidate-based and unbiased searches for genes that determine the aftermath of severe mtDNA damage in human cells. Beyond the mechanistic knowledge of mitochondrial dysfunction that will emerge from this project, we expect to identify new avenues toward the treatment of mitochondrial disease.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-STG - Starting Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2014-STG

See all projects funded under this call

Host institution

HELSINGIN YLIOPISTO
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 033 640,93
Address
FABIANINKATU 33
00014 HELSINGIN YLIOPISTO
Finland

See on map

Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 033 640,93

Beneficiaries (2)

My booklet 0 0