Objective
The Earth's climate system contains a highly complex interplay of numerous components, such as atmospheric greenhouse gases, ice sheets, and ocean circulation. Due to nonlinearities and feedbacks, changes to the system can result in rapid transitions to radically different climate states. In light of rising greenhouse gas levels there is an urgent need to better understand climate at such tipping points. Reconstructions of profound climate changes in the past provide crucial insight into our climate system and help to predict future changes. However, all proxies we use to reconstruct past climate depend on assumptions that are in addition increasingly uncertain back in time. A new kind of temperature proxy, the carbonate ‘clumped isotope’ thermometer, has great potential to overcome these obstacles. The proxy relies on thermodynamic principles, taking advantage of the temperature-dependence of the binding strength between different isotopes of carbon and oxygen, which makes it independent of other variables. Yet, widespread application of this technique in paleoceanography is currently prevented by the required large sample amounts, which are difficult to obtain from ocean sediments. If applied to the minute carbonate shells preserved in the sediments, this proxy would allow robust reconstructions of past temperatures in the surface and deep ocean, as well as global ice volume, far back in time. Here I propose to considerably decrease sample amount requirements of clumped isotope thermometry, building on recent successful modifications of the method and ideas for further analytical improvements. This will enable my group and me to thoroughly ground-truth the proxy for application in paleoceanography and for the first time apply it to aspects of past climate change across major climate transitions in the past, where clumped isotope thermometry can immediately contribute to solving long-standing first-order questions and allow for major progress in the field.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- humanities history and archaeology history
- natural sciences chemical sciences inorganic chemistry inorganic compounds
- natural sciences earth and related environmental sciences atmospheric sciences climatology climatic changes
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-STG - Starting Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2014-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
5020 Bergen
Norway
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.