Objective
It is now firmly established that most of the matter in the Universe is in the form of the mysterious dark matter,
contributing more than 80% to the total amount of matter. However, despite tremendous theoretical and
experimental efforts over the past few decades, dark matter remains elusive and one of the great unknowns
until today. To identify the nature of dark matter is evidently of fundamental importance and one of the
top priorities in science today. The quest for dark matter is inherently multi disciplinary with strong roots
in particle physics, astrophysics and cosmology, providing profound connections between these different
disciplines.
This project aims at exploring new avenues towards solving the dark matter puzzle, with a particular focus on
a few select groundbreaking topics. These are centered around (i) theoretical dark matter model building, (ii)
the study of new collider signatures, (iii) developing new techniques for the comparison and interpretation of
direct detection experiments and (iv) identifying astrophysical probes which constrain or give evidence for
dark matter self-interactions.
Given the impressive increase in sensitivity of upcoming dark matter experiments as well as the upcoming
high energy run of the Large Hadron Collider, there is no doubt that the era of data has begun for dark
matter searches and that we can expect putative signals rather than exclusion limits for the near future. It is
therefore extremely important to bring together different fields and exploit the complementarity of different
search strategies to maximise the amount of information gained from a successful detection. This inherently
multi disciplinary approach is at the heart of the current project, which can rely on a well established network
of collaborators and will bring together excellent young physicists with different backgrounds to form a small
but well structured research group which will significantly advance dark matter phenomenology in Europe.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences physical sciences theoretical physics particle physics particle accelerator
- natural sciences physical sciences theoretical physics particle physics fermions
- natural sciences physical sciences astronomy astrophysics dark matter
- natural sciences physical sciences astronomy physical cosmology
- natural sciences physical sciences theoretical physics particle physics photons
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-STG - Starting Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2014-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
22607 HAMBURG
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.