Objective
Energy harvesting (EH) from ambient vibrations originating from sources such as moving parts of machines, fluid flow and even body movement, has enormous potential for small-power applications such as wireless sensors, flexible, portable and wearable electronics, and bio-medical implants, to name a few. Nanoscale piezoelectric energy harvesters, also known as nanogenerators (NGs), can directly convert small scale ambient vibrations into electrical energy. Scavenging power from ubiquitous vibrations in this way offers an attractive route to supersede fixed power sources such as batteries that need replacing/recharging, and that do not scale with the diminishing size of modern electronics. This proposal aims to develop NGs for future self-powered smart devices. Ceramics such as lead zirconium titanate and semiconductors such as zinc oxide are the most widely used piezoelectric EH materials. This proposal however focuses on a different class of piezoelectric materials, namely ferroelectric polymers, such as polyvinlyidene fluoride (PVDF), its copolymers, and nylon. These are potentially superior EH materials as they are flexible, robust, lightweight, easy and cheap to fabricate, as well as being lead-free and bio-compatible. The key strategy of this proposal is in combining i) materials engineering to create novel piezoelectric polymer-ceramic nanocomposite materials with enhanced EH functionalities, ii) state-of-the art nanoscale characterization to explore and exploit these novel materials, and iii) fabrication of high performance NGs for implementation into commercial devices, using insight gained from modelling of materials and device parameters. The proposed research will culminate in a well-defined process for the large-scale production of highly efficient and low cost piezoelectric NGs with reliable EH performance to power the next generation of autonomous devices, thus steering the field into the renewable energy market as a clean and competitive technology.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology environmental engineering energy and fuels renewable energy
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering robotics soft robotics
- engineering and technology nanotechnology nano-materials
- engineering and technology mechanical engineering manufacturing engineering additive manufacturing
- engineering and technology materials engineering nanocomposites
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-STG - Starting Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2014-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
CB2 1TN CAMBRIDGE
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.