Objective
"We will use strain engineering as an enabling tool to study previously inaccessible or hard-to-study phenomena in two-dimensional atomic crystals (2DACs: graphene, bilayer graphene, and monolayer transition metal dichalcogenides). In our first objective, we develop unique experimental tools to control and characterize mechanical strain in 2DACs. These are the distinguishing features of our approach: (i) The use of very low disorder suspended devices; (ii) Both uniform and controlled non-uniform strain will be induced; (iii) The level of strain will be precisely adjusted and determined in-situ during measurements. We will then use controllably-strained samples to study electrical, mechanical, thermal, and optical properties of 2DACs:
Application of strain in suspended graphene will be shown to control amplitudes and dispersion relation of flexural out-of-plane phonons (FPs), a mode unique to 2D and quasi-2D materials. We will demonstrate, for the first time, that FPs dominate electrical, thermal, and mechanical of suspended graphene. Moreover, we will show dramatic mechanical softening of graphene in the regime of weak strain, similar to ""entropic spring"" behaviour seen in polymers.
We will engineer strain distributions in high-mobility suspended graphene devices that translate into near-constant ""pseudomagnetic field"" and observe Quantum Hall-like quantization at zero external magnetic field.
Strain-induced changes in topology of the band structure of bilayer graphene will be shown to affect Quantum Hall states and the Berry phase.
Through strain engineering, we will controllably adjust - and even make spatially dependent - the band gap energy and binding energies of excitons in monolayer transition metal dichalcogenides (TMDCs). We will study complex interplay between and direct and indirect excitons and look for emergence of a new phase of matter, an excitonic insulator, in strained narrow-bandgap TMDC.
"
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technology nanotechnology nano-materials two-dimensional nanostructures graphene
- natural sciences mathematics pure mathematics topology
- natural sciences physical sciences atomic physics
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-STG - Starting Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2014-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
14195 Berlin
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.