Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Quantum Photonic Engineering

Objective

By harnessing the unique properties of quantum mechanics (superposition and entanglement) to encode, transmit and process information, quantum information science offers significant opportunities to revolutionise information and communication technologies.

The far-reaching goal of this project is to build quantum technology demonstrators that can outperform conventional technologies in communications and computation.

For quantum information technologies (QITs) to have as big an impact on society as anticipated, a practical and scalable approach is needed. One promising approach to QITs is the photonics implementation, where single particles of light (photons) are used to encode, transmit and process quantum information – in the form of photonic quantum-bits (qubits). Currently, state-of-the-art experiments are limited to the “few-photon” regime, occupying many metres of space on an optical table, constructed from bulk optical elements, with no routes to scalability and far from outperforming conventional technologies.

Integrated quantum photonics has recently emerged as a new approach to address these challenges. This research programme will take an engineering approach to QITs and draw upon rapidly growing field of silicon photonics. We will develop a silicon-based quantum technology platform where single-photon sources, circuits and detectors will be integrated into miniature microchip circuits containing thousands of discrete components, enabling breakthroughs in quantum communications and computation, and developing a scalable approach to quantum technologies.

There are no new physics breakthroughs required to achieve the goals of this project, however, there are hard engineering challenges that need to be addressed.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-STG - Starting Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2014-STG

See all projects funded under this call

Host institution

UNIVERSITY OF BRISTOL
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 978 060,00
Address
BEACON HOUSE QUEENS ROAD
BS8 1QU Bristol
United Kingdom

See on map

Region
South West (England) Gloucestershire, Wiltshire and Bristol/Bath area Bristol, City of
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 978 060,00

Beneficiaries (1)

My booklet 0 0