Objective
"The nuclear magnetic resonance spectroscopy (NMR) is a versatile and powerful tool, especially in chemistry and in biology. However, its limited sensitivity and small amount of suitable probe nuclei pose severe constraints on the systems that may be explored.
This project aims at overcoming the above limitations by giving NMR an ultra-high sensitivity and by enlarging the NMR ""toolbox"" to dozens of nuclei across the periodic table. This will be achieved by applying the β-NMR method to the soft matter samples. The method relies on anisotropic emission of β particles in the decay of highly spin-polarized nuclei. This feature results in 10 orders of magnitude more sensitivity compared to conventional NMR and makes it applicable to elements which are otherwise difficult to investigate spectroscopically. β-NMR has been successfully applied in nuclear physics and material science in solid samples and high-vacuum environments, but never before to liquid samples placed in atmospheric pressure. With this novel approach I want to create a new universal and extremely sensitive tool to study various problems in biochemistry.
The first questions which I envisage addressing with this ground-breaking and versatile method concern the interaction of essential metal ions, which are spectroscopically silent in most techniques, Mg2+, Cu+, and Zn2+, with proteins and nucleic acids. The importance of these studies is well motivated by the fact that half of the proteins in our human body contain metal ions, but their interaction mechanism and factors influencing it are still not fully understood. In this respect NMR spectroscopy is of great help: it provides information on the structure, dynamics, and chemical properties of the metal complexes, by revealing the coordination number, oxidation state, bonding situation and electronic configuration of the interacting metal.
My long-term aim is to establish a firm basis for β-NMR in soft matter studies in biology, chemistry and physics."
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences biological sciences biochemistry biomolecules nucleic acids
- natural sciences physical sciences condensed matter physics soft matter physics
- natural sciences physical sciences nuclear physics
- natural sciences physical sciences optics spectroscopy absorption spectroscopy
- natural sciences earth and related environmental sciences atmospheric sciences meteorology atmospheric pressure
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-STG - Starting Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2014-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
1211 GENEVE 23
Switzerland
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.