Objective
Natural Gas (NG) will be one of the key parameters of the EU energy policy for the next decades. EU gas imports are expected to reach over 80% of total consumption by 2030. Thus, the EU is investing heavily in natural gas equipment.
Natural gas combustion has two side effects: the production of greenhouse gases and the emission of pollutants. Conventional techniques used to reduce these emissions are post-combustion treatments. Another solution is to act directly on the combustion process, limiting the pollutant formation, while maximizing the efficiency. New processes are using this strategy: regenerative burners, flameless combustion, combustion of highly diluted mixtures or oxy-combustion.
These technologies are still poorly understood. It is therefore important to develop studies on these new combustion processes, whose development needs real technological breakthroughs.
Reaching these goals requires to investigate the involved phenomena and detailed experiments and modelling of the kinetics and fluidynamics of the combustion processes are of paramount importance.
The CLEAN-Gas EJD Programme proposes high-level training for doctoral candidates with the following main objectives:
– developing and sharing innovative experimental diagnostic techniques;
– creating and validating detailed chemistry mechanisms of the combustion process;
– proposing new turbulent combustion models;
– enhancing high performance computing;
– encouraging team work and project oriented approach;
– proposing innovative applications, processes and technologies for NG combustion;
– participating in the European energy policy.
All students will receive a high-level training in the aforementioned domains through their PhD work with a multi-disciplinary vision and a key training for developing professional skills. The PhD candidates will be able to understand and respond to most of the key issues of the natural gas use in the European context.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technology environmental engineering energy and fuels fossil energy natural gas
- natural sciences physical sciences classical mechanics fluid mechanics fluid dynamics computational fluid dynamics
- natural sciences chemical sciences organic chemistry aliphatic compounds
- natural sciences computer and information sciences computational science multiphysics
- natural sciences computer and information sciences software software applications simulation software
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.1. - Fostering new skills by means of excellent initial training of researchers
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-ITN-EJD - European Joint Doctorates
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-ITN-2014
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
20133 Milano
Italy
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.