Objective
The aim of the INTO-CPS project is to create an integrated tool chain for comprehensive model-based design of Cyber-Physical Systems (CPSs). The tool chain will support the multidisciplinary, collaborative modelling of CPSs from requirements, through design, down to realisation in hardware and software. This will enable traceability at all stages of the development.
INTO-CPS will support the holistic modelling of CPSs, allowing system models to be built and analysed that would otherwise not be possible using standalone tools. We will integrate existing industry-strength tools with high Technology Readiness Levels (TRL 6–9) in their application domains. The solution will be based centrally around Functional Mockup Interface (FMI)-compatible co-simulation. The project focuses on the pragmatic integration of these tools, making extensions in areas where a need
has been recognised. The tool chain will be underpinned by a well-founded semantic foundations that ensures the results of analysis can be trusted.
The tool chain will provide powerful analysis techniques for CPSs, including connection to SysML; generation and static checking of FMI interfaces; model checking; Hardware-in-the-Loop (HiL) and Software-in-the-Loop (SiL) simulation, supported by code generation. The tool chain will allow for both Test Automation (TA) and Design Space Exploration (DSE) of CPSs. The INTO-CPS technologies will be accompanied by a comprehensive set of method guidelines that describe how to adopt the INTO-CPS approach, lowering entry barriers for CPS development. The tool chain will be tested with case studies in railways, agriculture, building and automotive.
The consortium has 4 academic and 7 industrial partners. The industrial partners comprise both tool vendors and case study owners. The INTO-CPS technology will enable experimenting with design alternatives enabling radical innovation where the overall concept is right first time, even when hardware prototypes does not yet exists.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciencesphysical sciencesastronomyspace exploration
- social sciencessociologyindustrial relationsautomation
- agricultural sciencesagriculture, forestry, and fisheriesagriculture
- natural sciencescomputer and information sciencessoftwaresoftware applicationssimulation software
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback.
You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
- H2020-EU.2.1.1. - INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Information and Communication Technologies (ICT) Main Programme
- H2020-EU.2.1.1.1. - A new generation of components and systems: Engineering of advanced embedded and energy and resource efficient components and systems
Call for proposal
(opens in new window) H2020-ICT-2014
See other projects for this callSub call
H2020-ICT-2014-1
Funding Scheme
RIA - Research and Innovation actionCoordinator
8000 Aarhus C
Denmark