Objective
A European Digital Single Market free of barriers, including language barriers, is a stated EU objective to be achieved by 2020. The findings of the META-NET Language White Papers show that currently only 3 of the EU-27 languages enjoy moderate to good support by our machine translation technologies, with either weak (at best fragmentary) or no support for the vast majority of the EU-27 languages. This lack is a key obstacle impeding the free flow of people, information and trade in the European Digital Single Market. Many of the languages not supported by our current technologies show common traits: they are morphologically complex, with free and diverse word order. Often there are not enough training resources and/or processing tools. Together this results in drastic drops in translation quality. The combined challenges of linguistic phenomena and resource scenarios have created a large and under-explored grey area in the language technology map of European languages. Combining support from key stakeholders, QT21 addresses this grey area developing (1) substantially improved statistical and machine-learning based translation models for challenging languages and resource scenarios, (2) improved evaluation and continuous learning from mistakes, guided by a systematic analysis of quality barriers, informed by human translators, (3) all with a strong focus on scalability, to ensure that learning and decoding with these models is efficient and that reliance on data (annotated or not) is minimised. To continuously measure progress, and to provide a platform for sharing and collaboration (QT21 internally and beyond), the project revolves around a series of Shared Tasks, for maximum impact co-organised with WMT. To support early technology transfer, QT21 proposes a Technology Bridge linking ICT-17(a) and (b) projects and opening up the possibility of showing technical feasibility of early research outputs in near to operational environments.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciencesbiological scienceszoologymammalogyprimatology
- natural sciencescomputer and information sciencesdata sciencenatural language processing
- natural sciencesmathematicsapplied mathematicsstatistics and probability
- natural sciencescomputer and information sciencesartificial intelligencemachine learning
- natural sciencescomputer and information sciencesartificial intelligencecomputational intelligence
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback.
You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Call for proposal
(opens in new window) H2020-ICT-2014
See other projects for this callSub call
H2020-ICT-2014-1
Funding Scheme
RIA - Research and Innovation actionCoordinator
67663 Kaiserslautern
Germany