Objective
The EU is well placed to exploit printed electronic technologies to create greater economic and social benefits for the EU, but only if we are able to commercialise innovative technologies created within the EU.
Ink jet printing technologies are at the forefront of printed electronic developments. However, Ink jet printing has only been able to achieve a resolution of >=10um and the viscosity of printable inks is limited to <40 centipoise, this further limits the solids content of inks to <30-Vol% and the size of the nano-fillers to <50nm typically. These factors limit the range of functional inks that can be printed as well as the resolution and final properties of the resultant printed/sintered structures and components.
The HI-RESPONSE project is based on highly innovative, patented Electro-static printing technology (ESJET) that has already been proven on TRL 4 to print to a resolution of 1um and be able to print inks with a viscosity of up to 40.000 cP. The resultant printed/sintered structures will therefore be able to achieve a high resolution and increase final component properties through enabling the printing of highly filled nano-inks and functional organic materials.
This technology will be further developed to TRL 6 within the project to allow for the design and assembly of a multi-head system that can achieve resolution, speeds and cost that far surpassed that of current ink-jet systems. The resultant system will be demonstrated at TRL 6 for a wide range of materials, including: nano-Cu and nano-ceramic filled inks and organic polymers. Each of these materials will be printed to create components specifically defined and specified by the industrial organisations within the consortium: Infineon, Ficosa, Piher (Meggitt) and Zytronic. The specific end-user defined applications are: Automotive aerials and sensors, metal meshed for OLED and touch screens, conductive through silicon vias and mechanical strengthening ribs for thin Si-wafers.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences chemical sciences polymer sciences
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors
- natural sciences chemical sciences inorganic chemistry metalloids
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.2.1.2. - INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies – Nanotechnologies
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.2.1.2.1. - Developing next generation nanomaterials, nanodevices and nanosystems
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
IA - Innovation action
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-NMP-2014-2015
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
SN5 5WB Swindon
United Kingdom
The organization defined itself as SME (small and medium-sized enterprise) at the time the Grant Agreement was signed.
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.