Objective
The introduction of the electricity market, the widespread diffusion of distributed generation from renewable and non-programmable energy sources and the need for storage are quickly changing the problems that Transmission and Distribution system operators have to face in their activity and are requiring a “smarter” grid. A first step in this direction is the development and installation of a flexible smart metering architecture for multiple energy vectors. Up to now the smart meters that in some countries are being installed at the users are nearly only devoted to billing improvements. The new metering systems must go much further to provide their contribution to various objectives such as end-user affordability of electricity, energy and market efficiency improvement, CO2 emissions and pollutants reduction. In the FLEXMETER project a flexible, multi-utility, multi-service metering architecture will be designed and deployed in two demonstrators. Simple off-the-shelf meters will be placed at the users for electric, thermal and gas metering; they will communicate with a building concentrator, where the “smartness” of the metering system will reside. A central cloud system will collect data from the building concentrators and from MV/LV substation meters. Data collection, fusion and mining algorithms will be adopted. The proposed architecture will allow for innovative services for the prosumers (e.g. analysis of the energy consumption), for the Distribution System Operators (DSOs) (e.g. fault detection, network balancing and storage integration) and for the retail market. Also demand side management devices could be plugged into the system. In the FLEXMETER project two pilot applications in two different countries (Italy and Sweden), on real systems, with the involvement of the local DSOs and volunteer prosumers will be demonstrated. The results on the demonstrators will then be scaled up to the size of the cities in order to evaluate the advantages on a real scale.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciencescomputer and information sciencesinternetinternet of things
- natural sciencescomputer and information sciencessoftware
- natural sciencescomputer and information sciencesdata sciencebig data
- social scienceseconomics and businessbusiness and managementbusiness models
- natural sciencescomputer and information sciencesdatabasesnon-relational databases
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback.
You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Call for proposal
(opens in new window) H2020-LCE-2014-2015
See other projects for this callSub call
H2020-LCE-2014-3
Funding Scheme
IA - Innovation actionCoordinator
10129 Torino
Italy