Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Very fast Imaging by Broadband coherent RAman

Project description

Real-time, non-invasive microscopy technique could revolutionise cellular imaging

The ERC-funded VIBRA project plans to develop an innovative microscope for real-time, non-invasive imaging of cells and tissues that could revolutionise biology and engineering. By combining detailed molecular information from the entire vibrational spectrum with near-video-rate acquisition speed, researchers will seek to overcome limitations in current Raman spectroscopy techniques. To achieve this goal, researchers will work on improving pulsed laser sources, optimising nonlinear interactions, increasing acquisition speed and implementing parallel on-board data processing. In the final application phase, VIBRA will validate the performance of the novel imaging system by studying cancerous cell differentiation and detecting neuronal tumours. Project results could pave the way for future virtual histopathology, allowing in vivo visualisation of functional properties in cells and tissues.

Objective

The VIBRA project aims at developing an innovative microscope for real-time non-invasive imaging of cells and tissues, which promises to have a revolutionary impact on several fields of biology and medicine. Chemically specific vibrational signatures of molecules enable their direct structural characterization. Reliable and quantitative endogenous bio-markers can be established, e.g. to follow cell differentiation and to identify crucial properties of tissues (malignant vs benign phenotype of a tumour). In this way neoplasms can be located and their borders with normal tissue traced for surgery.

Spontaneous Raman spectroscopy demonstrated this capability, but it is intrinsically too slow for imaging. Coherent Raman microscopy, on the other hand, can reach extremely high speed (up to the video rate) but at the expense of poor chemical selectivity, being limited to a single vibrational frequency.

The ground-breaking goal of VIBRA is to combine the most detailed molecular information over the entire vibrational spectrum with the highest acquisition speed. The PI will develop a complete coherent Raman microscope for near-video-rate broadband vibrational imaging. This high risk/high gain goal will be achieved by the combination of four key developments: improved pulsed laser source; optimized non-linear interaction, enhancing the signal; increase in acquisition speed, thanks to innovative spectrometers; parallel on-board data processing.

In the final application phase, the VIBRA project will validate the performances of the novel vibrational imaging system studying two important bio-medical problems: cancerous cell differentiation and detection of neuronal tumours. This will pave the way towards future “virtual histopathology”: intraoperative non-invasive evaluation of cancerous tissue. My vision is to allow researchers and doctors without a specific knowledge in lasers and optics to routinely visualize functional properties of cells and tissues in vivo.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-COG - Consolidator Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2014-CoG

See all projects funded under this call

Host institution

POLITECNICO DI MILANO
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 822 500,00
Address
PIAZZA LEONARDO DA VINCI 32
20133 Milano
Italy

See on map

Region
Nord-Ovest Lombardia Milano
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 822 500,00

Beneficiaries (1)

My booklet 0 0