Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

3D Model Catalysts to explore new routes to sustainable fuels

Project description

New insights into renewable resource production

New catalysts are essential for the transition to renewable resources and reducing dependence on oil. However, current catalyst development relies heavily on trial and error, hampering a detailed understanding of each component's role. In this context, the ERC funded 3MC project proposes using 3D model catalysts as an enabling tool to address this problem. While mimicking real catalysts closely enough for industrially relevant testing, these well-defined catalysts offer unprecedented precision in varying structural parameters. By assembling ordered mesoporous silica and carbon support materials with copper-based promoted and bimetallic nanoparticles, researchers can gain insight into the mechanisms and nanoalloys that influence catalytic functionality. This will enable the rational design of novel catalysts for sustainable chemical and fuel production from renewable resources.

Objective

Currently fuels, plastics, and drugs are predominantly manufactured from oil. A transition towards renewable resources critically depends on new catalysts, for instance to convert small molecules (such as solar or biomass derived hydrogen, carbon monoxide, water and carbon dioxide) into more complex ones (such as oxygenates, containing oxygen atoms in their structure). Catalyst development now often depends on trial and error rather than rational design, as the heterogeneity of these composite systems hampers detailed understanding of the role of each of the components.

I propose 3D model catalysts as a novel enabling tool to overcome this problem. Their well-defined nature allows unprecedented precision in the variation of structural parameters (morphology, spatial distribution) of the individual components, while at the same time they mimic real catalysts closely enough to allow testing under industrially relevant conditions. Using this approach I will address fundamental questions, such as:
* What are the mechanisms (structural, electronic, chemical) by which non-metal promoters influence the functionality of copper-based catalysts?
* Which nanoalloys can be formed, how does their composition influence the surface active sites and catalytic functionality under reaction conditions?
* Which size and interface effects occur, and how can we use them to tune the actitivity and selectivity towards desired products?

Our 3D model catalysts will be assembled from ordered mesoporous silica and carbon support materials and Cu-based promoted and bimetallic nanoparticles. The combination with high resolution characterization and testing under realistic conditions allows detailed insight into the role of the different components; critical for the rational design of novel catalysts for a future more sustainable production of chemicals and fuels from renewable resources.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-COG - Consolidator Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2014-CoG

See all projects funded under this call

Host institution

UNIVERSITEIT UTRECHT
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 999 625,00
Address
HEIDELBERGLAAN 8
3584 CS Utrecht
Netherlands

See on map

Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 999 625,00

Beneficiaries (1)

My booklet 0 0