Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Quantum control of levitated massive mechanical systems: a new approach for gravitational quantum physics

Objective

Quantum physics and general relativity are probably the most successful and well-tested theories of modern science. At the same time, their fundamental concepts are so dramatically different that there is disagreement on the most obvious questions such as “how does a mass in a quantum superposition state gravitate?“. Achieving progress on such foundational questions requires experiments at the interface between quantum physics and gravity, of which to date only a few of exist. The main objective of the proposed research is to establish quantum control of levitated massive objects as a new paradigm system for such experiments and to enter a hitherto inaccessible parameter regime of large mass and long quantum coherence.

The proposal builds on the enormous recent success in quantum control of the motion of solid-state mechanical resonators, which has emerged over the last decade as a new branch of interdisciplinary research in quantum and solid-state physics. Applied to optically or magnetically levitated systems this methodology promises (i) exceptional sensitivity to weak gravitational forces, hence enabling measurements of gravity between sub-millimeter objects; (ii) unprecedented levels of decoupling from the environment, thereby opening up a new route for long-lived quantum coherence of genuinely massive systems. Quantum control is achieved by coupling the motion either of optically trapped particles to an optical cavity field or of magnetically trapped particles to superconducting circuits. We will explore both methods for systematically expanding the available parameter space of macroscopic quantum systems and for first proof-of-concept experiments aimed towards addressing fundamental questions of gravitational quantum physics.

If successful, this research program will become a door-opener to the quantum regime of genuinely massive objects, where gravity of the quantum system itself may start to play a role for the correct description of a quantum experiment.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-COG - Consolidator Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2014-CoG

See all projects funded under this call

Host institution

UNIVERSITAT WIEN
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 2 155 285,00
Address
UNIVERSITATSRING 1
1010 WIEN
Austria

See on map

Region
Ostösterreich Wien Wien
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 2 155 285,00

Beneficiaries (1)

My booklet 0 0