Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Next level real-time characterisation of Li- and Na-ion batteries by – Automatic Tuning Matching Cycler (plus Goniometer) – ATMC(+G) in situ NMR

Objective

Concerns about finite energy resources and the need to decrease greenhouse gas emissions have increased the use of intermittent renewable energies on the electric grid. This is not without its challenges requiring more efficient ways to store electrical energy to balance demand with supply. Li-ion batteries (LIBs) are the most desirable form of energy storage (high energy / power densities) but an increasing demand of Li commodity chemicals combined with geographically-constrained reserves will drive up prices in the future. Due to the high abundance, low costs and very suitable redox potential, Na-ion batteries (NIBs) should open new avenues of research and engineering as complementary alternatives to LIBs. This shift has to be accompanied with a deeper understanding of the chemical reactions involving the multiple cell components.
The proposed project focuses on a next step of in situ NMR spectroscopy, offering the unique possibility of non-invasive real-time studies of batteries under operating conditions – to track the formation of intermediate phases and investigate electrolyte decomposition during cycling of LIBs and NIBs. Significantly different shifts of the multi-component samples, resonance broadening as well as interferences of the NMR and external battery cycler (EBC) circuit impair the experiments. Hence, we will set up a novel NMR probe system allowing “on-the-fly” adjustment of the NMR circuit during the measurement and sample orientation changes via an automated goniometer. Moreover, an entirely new NMR-EBC-connection design will benefit the real-time experiments. This next level Automatic Tuning Matching Cycler (plus Goniometer) – ATMC(+G) – in situ NMR approach will be established in a comparative study on lithium vs. sodium iron phosphate cathodes in LIBs and NIBs, respectively, including the application of new electrolytes to improve battery safety and cost factors. The application to a wider range of systems will include Na-Sn anodes for NIBs.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF-EF-ST - Standard EF

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2014

See all projects funded under this call

Coordinator

THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 183 454,80
Address
TRINITY LANE THE OLD SCHOOLS
CB2 1TN Cambridge
United Kingdom

See on map

Region
East of England East Anglia Cambridgeshire CC
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 183 454,80
My booklet 0 0