Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

The Cluster Observations and Theory Intersection: Providing selection functions and scaling relations to set constraints on the physics of the accelerating universe.

Objective

Astronomy is grappling with a profound issue: the origin of the accelerated expansion of the universe. Is it caused by a mysterious dark energy, or a new aspect of the gravitational interaction? Galaxy clusters, the largest structures in the Universe, will help answer this question. Cluster formation and evolution are driven by the evolution of the universe itself and cluster abundance is therefore a powerful observational tool that tightly constrains the cosmological model, such as dark energy, and key quantities of fundamental Physics, such as modifications to gravitational theory. These constraints complement and strengthen those from other observational probes, such as type Ia supernova (SNIa), gravitational lensing and baryon acoustic oscillations (BAO). Critical aspects in the scientific analysis of cluster surveys are the survey selection function, relating the survey catalogue to the general cluster population, and the relation between the observable richness and cluster mass, the basic theoretical quantity. The establishment of these two elements is critically needed for the exploitation of optical/near-infrared imaging cluster surveys planned by the European scientific community. We propose to fill this need by 1) quantifying imaging survey cluster selection functions and 2) determining the form of the cluster richness-mass relation using a synergy between observations and well-behaved realistic mock catalogues; we will then 3) introduce this information into the Fisher Matrix formalism to predict possible constraints on theoretical models, e.g the dark energy equation-of-state or modified gravity scenarios. The precision targeted by planned imaging surveys (e.g. Euclid, J-PAS, LSST, WFIRST) surpasses all previous analyses. Detailed evaluation of expected constraints under realistic conditions as proposed by our research lies at the forefront of current effort in field.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF-EF-ST - Standard EF

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2014

See all projects funded under this call

Coordinator

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 173 076,00
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 173 076,00
My booklet 0 0