Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Spin triplet pairings in ferromagnet Josephson junctions

Objective

For a long time, the coexistence of conventional superconductivity and ferromagnetism was believed to be impossible. Cooper pairs in normal superconductors are formed by two electrons with antiparallel spins in a singlet configuration while ferromagnets favour parallel alignment of electron spins. In 2001 it was theoretically predicted that under certain conditions both phases could coexist in hybrid structures, giving rise to a race for the discovery of an entirely new kind of superconducting electron pairing state in which the electrons are in the triplet state. The novel hypothesis of this Action relies on the fact that triplet pairs can be formed combining ferromagnets, normal metals and superconductors into hybrid Josephson junctions, and are stable enough to be used to carry spin information in addition to dissipationless charge transfer, which will represent an enormous improvement in comparison to the presently established spin-singlet-based devices.
This Action consists of two supplementary stages starting from the maximization of spin-triplet current densities in hybrid ferromagnet junctions (materials science) to the understanding of the basic mechanisms of the spin triplet pairs and the nanofabrication of hybrid Josephson junctions in which the spin triplet supercurrent will be controlled (condensed matter physics). Once the objectives of this Action will be achieved, besides its inherent immediate impact on spintronics and condensed matter, the generation of a radically new technology will emerge. This new technological paradigm, the superconducting spintronics , will take advantage of the unique properties of the two macroscopic phases that were believed to be incompatible and has the potential to overcome significant limitations of logic circuits based separately on superconductivity and spintronics. This experimental action has been built around a multidisciplinary research and innovation project which will be hold at the University of Cambridge.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF-EF-ST - Standard EF

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2014

See all projects funded under this call

Coordinator

THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 195 454,80
Address
TRINITY LANE THE OLD SCHOOLS
CB2 1TN CAMBRIDGE
United Kingdom

See on map

Region
East of England East Anglia Cambridgeshire CC
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 195 454,80
My booklet 0 0