Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Spectral Theory of Non-Selfadjoint Markov Processes with Applications in Self-Similarity, Branching Processes and Financial Mathematics

Objective

The project contextually sets up a novel framework to study the spectral-theoretical properties of classes of non-selfadjoint (NSA) operators related to Markov processes (MP) via their intertwining to a continuous path selfadjoint (SA) MP. Conceptually, this means that the jumps of each class of NSA MP can be considered a perturbation of one SA MP realized by an intertwining kernel. This approach can have far-reaching consequences for understanding classes of MP as the reduction to SA MP leads to well-studied objects whereas the spectral theory of NSA operators is far from understood. The price of that is the non-invertability of the intertwining kernels. This framework is explored and crystallized by a challenging,
detailed spectral-theoretical study of an enormous class of NSA operators directly arising from the key phenomenon of self-similarity and in duality from branching. This is achieved by a synergy of research fields complementing each other to obtain the spectral properties of those operators culminating in the derivation of spectral expansions of the generated semigroups. As a result of this synergy, a number of tools and techniques with impact, including applications to fields beyond the scope of the project, are derived. A particular development in the area of recurrent equations and special functions will be unexpectedly exploited to the effect of a comprehensive theoretical and applied study, including numerical schemes, of
key quantities in financial and insurance mathematics such as Asian options and perpetuities. A training-through-research in line with the fellow’s affiliation to the host institution and the proposed secondment will critically contribute to the optimal completion of the proposal in terms of time, scope and quality.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF-EF-ST - Standard EF

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2014

See all projects funded under this call

Coordinator

INSTITUTE OF MATHEMATICS AND INFORMATICS AT THE BULGARIAN ACADEMY OF SCIENCE
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 128 994,00
Address
ACAD G BONCHEV STREET BL 8
1113 Sofia
Bulgaria

See on map

Region
Югозападна и Южна централна България Югозападен София (столица)
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 128 994,00
My booklet 0 0