Objective
In this project the interaction of ultrashort laser pulses with semiconductor materials will be investigated on a principally new level by taking into account quantum effects that can emerge in highly-excited non-equilibrium matter. The central goal is to study bi-chromatic irradiation regimes which have been found to be extremely effective, compared to monochromatic laser beams, for various applications from micro-/nanostructuring of surfaces to nanoparticle generation and film deposition. This topic will be addressed through the development of a new powerful large-scale 3D model of laser-matter interaction. For the first time two modeling approaches will be combined, electronic structure theory and classical electrodynamics. Necessary steps to achieve these goals are:
• Making an existing classical FDTD model to be self-consistent via introducing feedback to the laser field from the swiftly evolving free electron population;
• Extending the model to the large scale 3D domain to account for realistic response of materials to polarized laser light;
• Modelling of the action of bi-chromatic laser light on semiconductors at the quantum level based on the time-dependent density functional theory (TDDFT); developing a theory of photo-ionization of materials by mixed laser wavelengths;
• Bridging classical large-scale simulations of ultrashort pulse excitation of semiconductors with quantum peculiarities of photo-ionization.
The key goal of the project is to demonstrate the power of the developed model in predicting the morphology of functionalized surfaces for materials of various properties under new irradiation conditions in collaboration with experimentalists at HiLASE. By providing in-depth understanding of underlying physics, this work will open the way to achieve the control over functionalization of semiconductor surfaces, thus, pushing this field away from empirical methods to a smart computer-predicted technique.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences computer and information sciences databases
- natural sciences physical sciences optics laser physics ultrafast lasers
- natural sciences physical sciences electromagnetism and electronics semiconductivity
- natural sciences chemical sciences catalysis
- natural sciences chemical sciences inorganic chemistry metalloids
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-EF-ST - Standard EF
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2014
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
182 21 Praha 8
Czechia
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.