Objective
The goal of this project is the construction of a Negative Ion Time Projection Chamber (NITPC) with triple Gas Electron Multiplier amplification and pixel readout (GEMPix) for directional Dark Matter (DM) searches. DM is 5 times as prevalent as normal matter in the Universe, but its identity remains unknown. Its mere existence implies that our inventory of the basic building blocks of nature is incomplete: deciphering its nature is one of the most compelling tasks for fundamental physics and astronomy. Weakly Interacting Massive Particles (WIMP) are well motivated DM candidates, independently predicted by Standard Model extensions and Big Bang cosmology. Direct detection experiments aim at observing very low energy (10-100 keV) nuclear recoil of WIMP scattering in the matter. While today leading experiments have managed to reach excellent rejection for electromagnetic components, other background sources (such as neutrinos and environmental radioactivity) will forbid to even think larger mass next-generation detectors without a drastic change in technology. We believe that the combination of the large volumes and improved position and energy resolution provided by the negative ion technique, together with the excellent performances of the GEMPix can offer a significant contribution to this research field. In a NITPC, negative ions drift rather than free electrons, drastically reducing diffusion thanks to their higher mass. This is why we want to combine for the first time this idea with one of the most advanced readout, the GEMPix: a triple GEM detector coupled to a Medipix ASIC board, able to provide excellent spatial, energy and time resolutions. Its sensitivity to single ionization cluster will allow this NITPC, together with the slow motion of the anions, to function effectively as a Time Expansion Chamber, hence NITEC. It's worth noticing how NITEC could work also as neutrinoless double beta decay detector, X-ray polarimeter and microdosimeter for hadrotherapy.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences theoretical physics particle physics neutrinos
- natural sciences chemical sciences inorganic chemistry transition metals
- natural sciences physical sciences astronomy physical cosmology big bang
- natural sciences physical sciences astronomy astrophysics dark matter
- natural sciences earth and related environmental sciences atmospheric sciences meteorology atmospheric pressure
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-EF-ST - Standard EF
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2014
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
00044 Frascati
Italy
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.