Objective
Directional cell migration is important in physiology and pathology. Molecular mechanisms regulating directional migration are largely studied; but the role of mechanical cues and their interplay with biochemical signals during directional migration is poorly understood. To address this we will use Neural Crest (NC) cells, a highly migratory embryonic cell population. Evidence about how chemical cues regulate NC migration has accumulated, but nothing is known about the biomechanics of NC migration. This proposal focuses on understanding how NC interacts with the mechanical cues from its environment during directional migration in vivo, as well as understanding the molecular nature of this interaction. Thus, our aims are: Aim 1) to study the role of mechanical cues in vivo and their interplay with chemical signals during in vivo NC migration. Aim 2) identify the molecular mechanism by which the mechanical properties of the substrate are sensed and translated as signals into the NC, and to test the role of Nedd9 as a key component of this process. (Nedd9 appears in a screening that I performed to identify potential NC mechanosensors).
These studies will provide new tools and information on the role of mechanical cues during directional migration in vivo, how these cues interact with chemical guidance, how are they integrated as cellular signalling within cells? These questions are poorly studied aspects of cell migration, thus our results will be a real contribution to the state-of-the-art in cell migration. This multidisciplinary proposal is will be mutually beneficial, providing the host and me with new collaborations. A research line will be created in ERA with NC as a model to study biophysics of migration in vivo. I will complement my current skills with new knowledge in biophysics of cell migration and managerial skills; this will have a countless impact in the career that I project as an independent researcher in the cell migration field.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences biological sciences biochemistry biomolecules proteins
- natural sciences biological sciences developmental biology
- medical and health sciences medical biotechnology cells technologies stem cells
- natural sciences biological sciences biophysics
- medical and health sciences clinical medicine embryology
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-EF-ST - Standard EF
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2014
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
WC1E 6BT LONDON
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.