Objective
Phenotypes are largely determined by genetic factors. However, a given genotype can give rise to very distinct phenotypes, as exemplified by the diversity of cell types in multicellular organisms. This phenotypic plasticity results from epigenetic changes; that is, reversible modifications to the DNA molecule and its associated proteins that modulate gene expression patterns. Epigenetic changes are critical to the establishment of developmental programs, but also to adjust transcription in response to the environment. The latter is particularly important for plant adaptation: owing to a sessile (immobile) lifestyle, plants cannot run away from adversity, and thus adapt to their environment by tuning gene expression in response to changing conditions. Most epigenetic information is erased from one generation to the next, so that new organisms start their life cycle with a “fresh” potential. However, there are instances in nature of heritable epigenetic marks that can be transmitted to the next generation. Thus, owing to their role in shaping gene expression, and the potential for heritable changes, epigenetic factors are of great interest for plant breeders, in their quest for adaptable, high yielding phenotypes. Most of our current understanding of epigenetic processes in plants has been developed in Arabidopsis, a key model system. However, the Arabidopsis epigenome is rather idiosyncratic, and this knowledge might translate poorly to crops. Here, we will use an interdisciplinary approach combining original genetic materials and bioinformatics to analyze epigenetic regulatory pathways in maize, with a focus on reproductive development. Maize is an important model plant, with a large and dynamic epigenome much more typical of crops. It is also a crop of great economic importance. Better understanding the epigenome of maize will open the door to the manipulation of key agronomic traits, including reproductive development, which is under strong epigenetic influence.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences biological sciences genetics DNA
- natural sciences physical sciences optics microscopy
- agricultural sciences agriculture, forestry, and fisheries agriculture agronomy plant breeding
- natural sciences biological sciences genetics genomes
- natural sciences biological sciences genetics epigenetics
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-GF - Global Fellowships
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2014
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
13572 Marseille
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.