Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Fungal resistance to antifungals is promoted by cell heterogeneity

Objective

The number of people who die from fungal infections is estimated to be equivalent to or greater than the numbers that die from either tuberculosis or malaria. There are only 3 classes of antifungal drugs available to treat these invasive diseases and resistance against these drugs is increasing. In this study I will investigate how antifungal resistance is impacted by cell heterogeneity in the pathogenic fungus Aspergillus fumigatus. The main hypothesis that I will test is that fungal cell heterogeneity provides subpopulations of cells with greater fitness to resist antifungal treatment. I will determine: (1) which features of three distinct fungal cell types contribute to cell heterogeneity; (2) which cell types and subpopulations of these cells show highest resistance or survival against antifungals; and (3) the roles of septal plugging and cell ploidy in the mechanistic basis of fungal cell heterogeneity. Cutting edge technologies that will be used in this study will include: (1) flow cytometry and fluorescence activated cell sorting (FACS) to identify and select cell subpopulations to test their antifungal resistance, (2) automated, high throughput, high content live cell imaging to analyse the resistance of single cells to antifungals, (3) advanced live-cell imaging techniques including GFP photoactivation and fluorescence recovery after photobleaching (FRAP) to identify septal pore plugging; and (4) laser microdissection to further analyse septal pore plugging. With these advanced techniques I will study the mechanistic basis of fungal resistance mediated by cell heterogeneity. My results will ultimately show how fungal cell heterogeneity impacts fitness against antifungal drugs and they will be the starting point for designing novel antifungal therapies that reduce this fitness.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF-EF-ST - Standard EF

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2014

See all projects funded under this call

Coordinator

THE UNIVERSITY OF MANCHESTER
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 195 454,80
Address
OXFORD ROAD
M13 9PL Manchester
United Kingdom

See on map

Region
North West (England) Greater Manchester Manchester
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 195 454,80
My booklet 0 0