Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Plasmonic Heaters Linked to Lanthanide-Based Nanothermometers for Photodynamic Therapy in the Near-Infrared

Objective

This project addresses the quest of new materials and approaches that nanotechnology requires to solve the current limitations of medicine. The potential to externally activate and control cellular processes inside the body by using light, or even to carry out treatments through drug delivery, photothermal and photodynamic therapies becomes a reality thanks to the use of especially tailored biocompatible nanoplatforms. However, the options are limited in terms of penetration depth, since most of the developed nanoplatforms work under visible light, which can only penetrate a few millimetres inside the body. Instead, the use of near-infrared wavelength allows light to travel distances in the centimetre range.
Temperature is a key parameter for the metabolism of cells and to control chemical reactions. Therefore, we propose a hybrid nanoplatform that, working within the biological transparency windows in the near-infrared, optically measures and controls temperature with the accuracy that is required for biomedical applications. The novelty of the approach is based on coupling two different types of nanoparticles with complementary functionalities: lanthanide-doped materials as remote optical sensor to measure temperature, and metal nanoparticles with plasmon resonances in the near-infrared to exploit their excellent heating properties. This approach involves the development of new materials with outstanding physical properties for thermometry in the infrared (hardly existing now), as well as tailoring the heating properties of plasmonic nanoparticles with different morphologies (rods, stars or cages) and finally, the creation of a heater/thermometer hybrid structure and the study of its performance for in vitro photothermal therapies.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF-EF-ST - Standard EF

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2014

See all projects funded under this call

Coordinator

ASOCIACION CENTRO DE INVESTIGACION COOPERATIVA EN BIOMATERIALES- CIC biomaGUNE
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 158 121,60
Address
PASEO MIRAMON 182, PARQUE TECNOLOGICO DE SAN SEBASTIAN EDIFICIO EMPRESARIAL C
20009 San Sebastian
Spain

See on map

Region
Noreste País Vasco Gipuzkoa
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 158 121,60
My booklet 0 0