Objective
High loading of carbonaceous aerosols from residential combustion of coal and wood fuels, traffic, industry, and biomass burning pollute the air of East Asia. The resulting Atmospheric Brown Clouds (ABC) are in wintertime warming the atmosphere yet dimming the surface in this vast region with severe impact on the climate, food and water security as well as air quality. Although these short-lived climate pollutant (SLCP) aerosols attract large interests across the science-policy interface, efficient mitigation actions are hampered by the limited understanding of the relative contributions of different sources of combustion-derived carbonaceous aerosols and of their subsequent atmospheric processing. Here the relative contribution from fossil fuel and biomass combustion will be quantified by molecular combustion markers and powerful isotopic fingerprinting, including microscale-14C dating of BC and OC aerosols. Aerosol samples will be probed from recently established Sino-Swedish observational program in the four populated and industrialization hotspots in China (North China Plain – Beijing; Yangtze River Delta – Shanghai; Pearl River Delta – Guangzhou; Szechuan Basin– Chengdu) and from the SE Yellow Sea recipient site on a Jeju Island (Korea Climate Observatory – Gosan), providing an ideal context for these investigations. The molecular/isotopic fingerprints of such synoptic aerosol samples provide integrated source signature and possibility to assess atmospheric processing during over-ocean long-range transport. This field quantification of BC and OC sources and processing in E Asia will contribute to (a) top-down observation-based test and improvement of bottom-up technology-based emission inventories (uncertain for small-scale and open combustion); (b) improved aerosol parameterization in climate and air quality models, and (c) scientific underpinning for policy makers to make efficient mitigation actions toward decreasing anthropogenic aerosol emissions.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology environmental engineering energy and fuels fossil energy coal
- engineering and technology environmental engineering air pollution engineering
- natural sciences earth and related environmental sciences environmental sciences pollution
- natural sciences earth and related environmental sciences atmospheric sciences climatology climatic changes
- agricultural sciences agricultural biotechnology biomass
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-EF-ST - Standard EF
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2014
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
10691 Stockholm
Sweden
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.