Objective
In utero development is critical for normal skeletal and cardiac muscle function throughout life. Many diseases, such as distal arthrogryposis (affecting 1/3000 live births) and clubfoot (1/1000) in skeletal muscle and arrhythmias in cardiac muscle (1/4000), manifest in the embryonic and foetal period. They permanently affect longevity and quality of life. Because the effects of these diseases are present at birth, the study of in utero samples is essential to understanding the diseases’ properties and effects on the developing muscle tissues. Additionally, many of these afflictions are caused by mutations in the isoforms of troponin or myosin II that are predominantly expressed during human development. Studying the native muscle is all the more important as a control in furthering research on the effects of mutations in troponin and myosin. In particular, human foetal-specific isoforms of myosin II expressed in these muscle are poorly understood and very little has been published about these isoforms. We do know from the literature that myosin’s use of its substrate, ATP, varies widely between isoforms and that the myosin expression changes during times of physiological distress, such as heart failure. Because congenital abnormalities of the heart and skeletal muscle both can originate in the foetal muscle, further investigation is needed into the myosins’ biophysical and biomechanical mechanisms. The overarching goal of this project is to improve understanding of how foetal forms of skeletal and cardiac myosins work and are regulated by troponin in muscle, using biophysical-biochemical, molecular biology and computational modelling techniques. The fellow will do this by experimentally determining the kinetics of myosin-ATP, myosin-actin and myosin-actin-troponin-tropomyosin interactions using stopped-flow kinetic analysis, and then use the parameters defined to inform the computational models developed by Dr. Geeves.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- medical and health sciences clinical medicine cardiology cardiovascular diseases cardiac arrhythmia
- medical and health sciences medical biotechnology tissue engineering
- medical and health sciences medical biotechnology cells technologies stem cells
- natural sciences biological sciences genetics mutation
- natural sciences biological sciences molecular biology
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-EF-ST - Standard EF
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2014
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
CT2 7NZ Canterbury, Kent
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.