Objective
Large area, scalable production of single layer and defect free graphene is important for its use in industrial applications. Currently, common methods used to prepare graphene include micromechanical cleavage, chemical vapor deposition, and chemical reduction. However, all these methods have their own shortcomings, for example, difficulty in scale-up or poor quality due to significant defects. To address this issue, in this project, we will focus on developing a novel electrochemical cathodic exfoliation approach to produce high quality graphene. Non-covalent edge-functionalization will be employed to open graphite edges. Upon a negative potential applied on the functionalized graphite electrode, H+ cations from protic ionic liquid electrolyte will be inserted into graphite interlayers and be reduced to hydrogen gas to further open the edge of graphite, which will facilitate the larger imidazolium cations to intercalate, expand and completely exfoliate graphite to single layer graphene. This cathodic exfoliation approach is nondestructive to the resultant graphene, and maintains its perfect structure and electronic properties, which will result in high electrochemical stability and benefit the performance of graphene-based fuel cell electrocatalysts. Finally proton exchange membrane fuel cells will be fabricated with graphene based electrocatalysts above and these are expected to exhibit high power density and long term durability, which may produce a promising future energy technology.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology nanotechnology nano-materials two-dimensional nanostructures graphene
- natural sciences chemical sciences catalysis electrocatalysis
- engineering and technology other engineering and technologies nuclear engineering
- engineering and technology chemical engineering separation technologies
- engineering and technology environmental engineering energy and fuels fuel cells
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-EF-ST - Standard EF
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2014
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
M13 9PL Manchester
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.