Objective
A major challenge in contemporary physics is to understand and control unconventional states of matter, such as topological superconductors and Majorana fermions (MFs). Once harnessed, this physics offers bright prospects for low-power superconducting digital electronics and fault-tolerant quantum computation. Recent proposals showed that ordered chains of magnetic impurities, in proximity of a superconductor, can hold a MFs. This state come from a precise cooperation between superconductivity and magnetism.
I propose to study this cooperation in a unique system consisting of a nanoscopic metallic island where these two mechanism can be, for the first time, independently controlled. Specifically I will combine two novel technologies for my studies: (i) the superconducting quantum interference proximity transistor (SQUIPT) and (ii) the molecular spin doping. The SQUIPT is a novel device composed by a nanoscopic metallic island in proximity of a superconducting loop able to induce and control superconductivity in the normal metal, whereas molecular spin doping allows for controlled chemical deposition of magnetic impurities in the same normal metal.
My first objective is to study the competition/cooperation between the magnetic and the superconducting correlations induced in the electrons of the nanoscopic metallic island by measuring the amplitude and phase of the superconducting Josephson current. Secondly, I will investigate the effect of the magnetic impurities on the quasi-electrons density of states in such junction.
Successful combination of my bottom-up and top-down approaches will contribute at first instance to the understating of this fundamental competition/cooperation and later to the highly sought-after and ambitious target of the demonstrating MFs in the solid-state. Tunnel spectroscopy measurements of the SQUIPT will reveal the MFs that, at cryogenic temperatures, can emerge in the metallic island properly doped by the magnetic impurities.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences physical sciences theoretical physics particle physics fermions
- natural sciences physical sciences condensed matter physics mesoscopic physics
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering digital electronics
- natural sciences physical sciences electromagnetism and electronics superconductivity
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-EF-ST - Standard EF
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2014
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
00185 Roma
Italy
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.