Objective
Reducing diesel particulate matter (DPM) is a key research area for automotive OEMs in order to meet the more and more stringent emission regulations. Diesel particulate filters (DPF) are used in separation of carbonatious particles by mechanical filtration and subsequent burning of the DPM in order to avoid pressure drop by filter plugging. Since these materials burn at high temperatures (more than 550°C) with oxygen while diesel exhaust gases temperature lies between 200 and 400°C, a suitable catalytic material is required to promote the soot or DPM combustion. Thus, it is very important to develop suitable catalytic materials which are active enough to ignite the DPM at low temperatures.
This research proposal is aimed to 1) design and develop a nanofibrous structured catalytic material (Pr2O3 and Mn2O3) using a novel synthesis method to have functions of trapping and combustion of DPM, 2) perform detailed characterisation of the nanofibre catalyst, and 3) demonstrate the emission reduction potential of nanofiber catalyst coated DPF by engine testing. The special morphology of nanofiber structure catalysts will increase the contact point of the DPM and help in burning of the soot. Thus the catalysed DPF can reduce the exhaust particulate emissions and exhaust back pressure there by improving the engine performance as well. These will be demonstrated in running a legislative emission driving cycle on a transient dynamometer engine test facility at the University of Birmingham (UoB). The experienced researcher will bring a new research area in the development of nanofiberous catalyst for DPF to the UoB and the latest advancements in engine testing and emission measurement techniques in the Future Engine and Fuels group will be transferred to the experienced researcher as part of the knowledge transfer. The knowledge generated will be shared among the wide research community and public through various outreach programmes.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences chemical sciences inorganic chemistry transition metals
- engineering and technology mechanical engineering vehicle engineering aerospace engineering satellite technology
- natural sciences chemical sciences catalysis
- engineering and technology environmental engineering energy and fuels
- natural sciences physical sciences optics spectroscopy
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-EF-ST - Standard EF
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2014
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
B15 2TT Birmingham
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.