Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Spectral Theory of Graph Limits

Objective

The need to understand the behavior of real-life networks made it necessary to work out non-standard graph theoretic tools capable of dealing with a large number of interacting nodes. New mathematical areas emerged, such as graph convergence or parallel algorithms.

The proposal suggests the study of the spectral aspects of these areas. The proposed research is built around two core problems that grew out of and are natural continuations of Harangi's previous work in spectral graph theory at the University of Toronto. One is a spectral version of the so-called soficity problem, a major open question in the area of Benjamini-Schramm convergence. The other is an ambitious conjecture of Harangi and Virag concerning eigenvectors of random regular graphs, stating that these eigenvectors converge to Gaussian wave functions.

In the past few years the Renyi Institute has become the European center for studying graph convergence with several experts of the field working there as well as many talented and motivated graduate students and postdoctoral fellows. Being a member of this research group will allow Harangi to collaborate with researchers from various different mathematical disciplines. The proposed research topic is at the meeting point of these areas. The host's expertise in groups and graph limits will complement Harangi's analytic skills.

The proposed fellowship would give Harangi an excellent oppurtinity to work with some of the top researchers in his field, to acquire the necessary tools to crack the exciting research problems proposed and to make the optimal next step in his career.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF-EF-ST - Standard EF

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2014

See all projects funded under this call

Coordinator

HUN-REN RENYI ALFRED MATEMATIKAI KUTATOINTEZET
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 134 239,20
Address
REALTANODA STREET 13-15
1053 Budapest
Hungary

See on map

Region
Közép-Magyarország Budapest Budapest
Activity type
Other
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 134 239,20
My booklet 0 0