Objective
GRAPHEEN project aims at scaling up a green, affordable and straightforward process for the industrial synthesis of graphene-based materials for their use as new electrode materials in higher performance electrochemical energy storage devices: lithium ion batteries and supercapacitors.
Lithium Ion batteries (LIBs) are currently dominating the energy storage market, as they are to date best performing devices in terms of energy storage capability (energy density). However, LIBs are still facing challenges because they lack of a high power density, meaning these devices have long charging/discharging cycles. This issue is especially important in view of efficiently exploiting renewable energies and especially for supplying the required energy to power electric vehicles (when high energy inputs are required in a very short time). As alternative, supercapacitors emerge as alternative to Lithium Ion batteries because these devices can provide high energy inputs in just a matter of seconds because of their high power density. Nevertheless, in contrast with LIBs, supercapacitors cannot accumulate enough energy to supply during a long time (they have a low energy density). For these reasons, supercapacitors and LIBs are being used as complements one of each other in those highly energy demanding applications. In view of the rapid market entrance of electric vehicles and the big pressure towards using alternative energy sources to fossil fuels, the energy sector is facing an increased need for solutions to enhance the power density of LIBs and to improve the energy density of supercapacitors. The solution to achieve these improvements is the development of new and better performing electrode materials, as the performance of electrochemical devices mostly relies on the properties of the electrodes integrating them.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences chemical sciences electrochemistry electric batteries
- engineering and technology environmental engineering energy and fuels renewable energy
- social sciences social geography transport electric vehicles
- engineering and technology nanotechnology nano-materials two-dimensional nanostructures graphene
- engineering and technology materials engineering composites
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.3.3. - SOCIETAL CHALLENGES - Secure, clean and efficient energy
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.2.3.1. - Mainstreaming SME support, especially through a dedicated instrument
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
SME-1 - SME instrument phase 1
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-SMEInst-2014-2015
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
28049 Madrid
Spain
The organization defined itself as SME (small and medium-sized enterprise) at the time the Grant Agreement was signed.
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.