Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

An Automatic Microfluidic Device Assembly System

Objective

Microfluidic systems, in general, have proven important platforms for biomedical assays. These systems benefit from reduced requirements for expensive reagents, short analysis times, and portability. Although microfluidic systems are convenient platforms, their use in the life sciences is still limited mainly due to the high-level fabrication expertise required for construction.

Integrated microfluidics is one of the most sophisticated three-dimensional (multi layer) solution. It requires soft lithography (PDMS based chips), for production of high complexity microfluidic systems (multiple serial or parallel processes). Integrated microfluidics in particular is almost non-existent in the industry due to the low yield and uncontrolled production process.

My ERC project (MUDLOC-2012) is to develop a microfluidic platform for multidimensional protein array analysis. It uses complex multilayer microfluidic devices that consist of 2 PDMS layers and a glass microarray. The integrated microfluidics system contains thousands of micromechanical valves in micrometer dimensions, controlling thousands of parallel reactions. Our research demands production of hundreds of such devices.

We, as all others who produce integrated microfluidics, suffered from frustrating low yield (15%). In order to improve fabrication yield and to fabricate devices with increased density, we designed and manufactured, a first of its kind, full production process sequence, semi automatic Microfluidic Device Assembly System (µDAS). This resulted in a direct increase of device complexity and yield (85%) over the last half year.

The 2nd generation automated µDAS prototype will become a generic assembly tool for soft lithography. µDAS will enable a critical production standard and process control, which will pave the road for significant penetration of complex integrated microfluidics technology into both academia and industry.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-POC - Proof of Concept Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2014-PoC

See all projects funded under this call

Host institution

BAR ILAN UNIVERSITY
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 150 000,00
Address
BAR ILAN UNIVERSITY CAMPUS
52900 Ramat Gan
Israel

See on map

Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 150 000,00

Beneficiaries (1)

My booklet 0 0