Objective
The Variable Range Hopping is considered in the Physics literature as an effective model for the analysis of conductivity in semiconductors. Understanding how the macroscopic parameters depend on the small-scale randomness of the environment and proving the Einstein Relation for this model is the ambitious aim of this project.
Main objectives:
1) Extend recent results (law of large numbers, existence of a stationary state) for long-range reversible random walks on point processes including the possibility of traps.
2) Analyze how an external field influences the limiting velocity of the Variable Range Hop- ping, in comparison to similar models from Mathematical Physics.
3) Establish the first rigorous Einstein Relation for a physically relevant model, the Variable Range Hopping.
The mathematical techniques we have at our disposal nowadays (such as the weak Einstein Relation and the control of long range models) are a solid basis for the investigation of the problem: This would be the first time an Einstein Relation is rigorously proven for a relevant physical model. Furthermore, the richness of the subject guarantees also many intermediate results of great relevance in the field of Probability Theory.
Besides the big scientific relevance of the expected results, the project will have a strong impact also on the career of the experienced researcher, completing his international profile of independent scientist, and will also strengthen the interplay between the Probability Theory communities of France, Germany and Italy. Finally, a positive outcome of the action will bring a significant insight on the physical study of semiconductors.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences mathematics applied mathematics mathematical physics
- natural sciences physical sciences electromagnetism and electronics semiconductivity
- natural sciences mathematics applied mathematics statistics and probability
- social sciences law
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-EF-ST - Standard EF
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2014
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
75775 PARIS CEDEX 16
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.