Objective
Thermophotonic (TPX) coolers and generators based on electroluminescent (EL) cooling have the potential to enable a high efficiency replacement for thermoelectric devices. Highly optimized TPX devices can even outperform modern compressor based household refrigerators and heat pumps, enabling a significant reduction in the global energy consumption of cooling and heating. While the EL cooling phenomenon is theoretically well understood, it was only very recently demonstrated for the first time under very small power conditions. Enabling high power EL cooling, however, will require a breakthrough in reducing the losses present in conventional light emitting diodes (LED).
iTPX aims to enable this breakthrough by developing an alternative approach to enhance the efficiency of light emission. The approach is based on enclosing the emitter-absorber pair used in TPX in a single semiconductor structure forming an optical cavity. This enhances the light emission rate by an order of magnitude and provides a substantial increase in the efficiency as well as several other technical and fundamental benefits. The main goal of iTPX is to demonstrate high power EL cooling for the first time and to provide quantitative insight on the limitations and possibilities of the cavity-based approach. Recent studies have shown extremely high – over 99 % – internal and external quantum efficiencies of light emission from optically pumped semiconductor structures. This suggests that the material quality of common III-V compound semiconductors is perfectly sufficient for EL cooling if similarly performing electrically injected structures can be fabricated in the single cavity configuration.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technology materials engineering crystals
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors optical sensors
- natural sciences physical sciences electromagnetism and electronics semiconductivity
- natural sciences computer and information sciences software software applications simulation software
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-STG - Starting Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2014-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
02150 Espoo
Finland
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.