Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Causal Analysis of Feedback Systems

Objective

"Many questions in science, policy making and everyday life are of a causal nature: how would changing A influence B? Causal inference, a branch of statistics and machine learning, studies how cause-effect relationships can be discovered from data and how these can be used for making predictions in situations where a system has been perturbed by an external intervention. The ability to reliably make such causal predictions is of great value for practical applications in a variety of disciplines. Over the last two decades, remarkable progress has been made in the field. However, even though state-of-the-art causal inference algorithms work well on simulated data when all their assumptions are met, there is still a considerable gap between theory and practice. The goal of CAFES is to bridge that gap by developing theory and algorithms that will enable large-scale applications of causal inference in various challenging domains in science, industry and decision making.

The key challenge that will be addressed is how to deal with cyclic causal relationships (""feedback loops""). Feedback loops are very common in many domains (e.g. biology, economy and climatology), but have mostly been ignored so far in the field. Building on recently established connections between dynamical systems and causal models, CAFES will develop theory and algorithms for causal modeling, reasoning, discovery and prediction for cyclic causal systems. Extensions to stationary and non-stationary processes will be developed to advance the state-of-the-art in causal analysis of time-series data. In order to optimally use available resources, computationally efficient and statistically robust algorithms for causal inference from observational and interventional data in the context of confounders and feedback will be developed. The work will be done with a strong focus on applications in molecular biology, one of the most promising areas for automated causal inference from data.

"

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-STG - Starting Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2014-STG

See all projects funded under this call

Host institution

UNIVERSITEIT VAN AMSTERDAM
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 405 652,00
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 405 652,00

Beneficiaries (1)

My booklet 0 0