Skip to main content
European Commission logo print header

Imaging Brain Circuits to Decode Brain Computations: Multimodal Multiscale Imaging of Cortical Microcircuits to Model Predictive Coding in Human Vision

Descripción del proyecto

Una mirada más atenta a los microcircuitos cerebrales

El cerebro humano es una de las redes biológicas más complejas, pero su arquitectura y base computacional siguen siendo en gran medida desconocidas. Para los investigadores que tratan de comprender la cognición humana, es difícil desarrollar tratamientos eficaces para los trastornos neurológicos o incluso conocimientos básicos sobre cómo procesa la información el cerebro. En este contexto, el equipo del proyecto MULTICONNECT, financiado por el Consejo Europeo de Investigación, pretende desvelar los secretos del cerebro humano obteniendo imágenes de su conectividad cortical a múltiples escalas espaciales. Con ayuda de tomografías por resonancia magnética nuclear a intensidades de campo ultraelevadas, investigará la estructura y función de los microcircuitos corticales humanos para comprender la base computacional de la cognición humana. La hipótesis central es que las variaciones en los cálculos de codificación predictiva en diferentes áreas visuales se basan en variaciones en la conectividad de los microcircuitos.

Objetivo

The human brain is one of the largest and most complex biological networks known to exist. The architecture of its circuits, and therefore the computational basis of human cognition, remains largely unknown. The central aim of this proposal is to image human cortical connectivity at multiple spatial scales in order to understand human cortical computations.
Whereas canonical cortical microcircuits are an established theory of the repeating structure of the neocortex’s circuits, predictive coding provides a prominent proposal of what these circuits compute. This leads to the core hypothesis of this proposal: the variations in predictive coding computations performed by human cortical microcircuits in different visual areas are grounded in variations in their microcircuit connectivity. As a central case-study, this proposal investigates human visual apparent motion perception in V1/2/3 and V5/MT+.
The proposed research program is organized in two workpackages (WP I and II). WP I has the aim of imaging the multiscale connections of human neocortical microcircuits. The projects in WP I focus on structure and move from the mesoscale down to the microscale. WP II has the aim of modelling how microcircuits support predictive coding computations. The projects in WP II focus on function and move from the microscale back up to the mesoscale. Structural and functional assessment of microcircuitry in the human brain only recently became possible with the development of magnetic resonance imaging (MRI) at ultra-high field-strengths (UHF) of 7T and above. UHF diffusion MRI, combined with light microscopy, is used to image circuit structure in WP I. UHF functional MRI is used for computational modelling of computations in WP II.
Successful completion of the planned research will significantly advance our understanding of the computations in cortical microcircuits, deliver important new human connectomic reference data, and improve generative models of human cortical processing.

Régimen de financiación

ERC-STG - Starting Grant

Institución de acogida

UNIVERSITEIT MAASTRICHT
Aportación neta de la UEn
€ 1 500 000,00
Dirección
MINDERBROEDERSBERG 4
6200 MD Maastricht
Países Bajos

Ver en el mapa

Región
Zuid-Nederland Limburg (NL) Zuid-Limburg
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total
€ 1 500 000,00

Beneficiarios (1)