Project description
Uncovering the origin of cosmic rays and neutrinos with LOFAR
The origin of cosmic rays remains a mystery in astrophysics: researchers believe that ultra-high-energy cosmic rays come from extragalactic sources, while lower-energy ones stem from our galaxy. The ERC-funded LOFAR project aims to distinguish between these components by studying the mass composition of cosmic rays and neutrinos. Utilising LOFAR, the first telescope capable of detecting individual cosmic rays, researchers involved in the project have suggested an early transition to an extragalactic component. By upgrading the detector and improving detection techniques, researchers will investigate the origin of high-energy cosmic rays and neutrinos and probe for new physics such as cosmic string decays predicted by supersymmetric theories.
Objective
The origin of cosmic rays remains one of the largest mysteries in astrophysics. Innovative and accurate radio measurements of cosmic rays and neutrinos with LOFAR promise to provide new answers.
It is generally believed that ultra-high-energy cosmic rays are produced in extragalactic sources like gamma- ray bursts or active galactic nuclei, while the lower energy cosmic rays come from our own Galaxy. At what energy this transition takes place is still unknown. Here we focus on disentangling Galactic and extragalactic components by studying the mass composition between 10^17 and 10^18 eV, a regime that is also crucial for understanding the origin of the extraterrestrial neutrinos detected by IceCube.
We do this with LOFAR, the first radio telescope that can detect individual cosmic rays with hundreds of antennas. This incredible level of detail allowed us to finally understand the complicated radiation mechanism and to perform the first-ever accurate mass analysis based on radio measurements. Our first data reveal a strong proton component below 10^18 eV, suggesting an early transition to an extragalactic component. With upgrades to our detector and techniques we will be able to improve our sample size by an order of magnitude, resolve more mass components, and identify the origin of high-energy cosmic rays and neutrinos.
The technique may be scaled up to higher energies, measured at the Pierre Auger Observatory, where mass information is needed to correlate cosmic rays with their astrophysical sources and to confirm the nature of the cutoff at ~10^19.6 eV.
We can even search for particles beyond the GZK limit. With the Westerbork telescope we have already set the best limit on cosmic rays and neutrinos above 10^23 eV. With LOFAR we will achieve a much better sensitivity at lower energies, also probing for new physics, like the decays of cosmic strings predicted by supersymmetric theories.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-STG - Starting Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2014-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
1050 BRUSSEL
Belgium
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.